Wili Phieu's Blog

Just another WordPress.com weblog

Archive for the ‘Aircrafts of Europe’ Category

A400M (Future Large Aircraft) Tactical Transport Aircraft

Posted by Tra Tran Hung trên Tháng Bảy 21, 2009






Maximum Take-Off Weight
Maximum Landing Weight
Operating Empty Weight
Maximum Payload
Total Internal Fuel


4 x TP400-D6 turboprop
Over 11,000shp each


Cruise Speed
Mach 0.68 to 0.72
Maximum Operating Speed
300kt CAS
Range at Maximum Payload
30t Payload Range
20t Payload Range
Maximum Operating Altitude
Tanker Performance Characteristics
2-point role-convertible tanker/transporter
Fuel Capacity
46.7t or 58t with two cargo bay fuel tanks

Cargo Box Dimensions:

Length (Excluding Ramp)
Ramp Length
Height (Aft of Wing)
Cargo Box Capacity



The A400M (formerly known as the future large aircraft) is a military transporter designed to meet the requirements of the air forces of Belgium, France, Germany, Italy, Spain, Turkey and the United Kingdom.

A European staff target was drawn up in 1993, together with a memorandum of understanding signed by the governments of the seven nations. Italy subsequently withdrew from the programme. Airbus Military SL of Madrid, a subsidiary of Airbus Industrie, is responsible for management of the A400M programme.

Other companies with a share in the programme are: BAE Systems (UK), EADS (Germany, France and Spain), Flabel (Belgium) and Tusas Aerospace Industries (Turkey). Final assembly will take place in Seville, Spain.

“The A400M (formerly known as the future large aircraft) is a military transporter.”

In May 2003, a development and production contact was signed between Airbus and OCCAR, the European procurements agency for 180 aircraft: Belgium seven, France 50, Germany 60, Luxembourg one, Spain 27, Turkey ten and the UK 25 aircraft. First metal cut for the airframe of A400M was in January 2005 and final assembly began in August 2007. The first aircraft was rolled out in June 2008 and was scheduled to make its maiden flight in late 2008. However problems with the propulsion system have resulted in a delay and first flight is expected in the second half of 2009.

First deliveries to the French Air Force are planned for late 2010. Deliveries are expected to conclude in 2025.

In April 2005, South Africa signed a contract with Airbus Military to be a full participant in the A400M programme. South Africa will order between eight and 14 aircraft, for delivery between 2010 and 2014. In July 2005, Chile signed a letter of intent with Airbus Military for up to three A400M. In December 2005, Malaysia signed a contract for the purchase of four A400M.

Total firm orders for the A400M stand at 192 aircraft.

A400M design

The A400M has a much larger payload than the C-160 Transall and C-130 and the design makes extensive use of composite materials. The capability for short soft field landing and take-off is part of the requirement and the aircraft has six-wheel high-flotation main landing gear.

The need for airdrops and tactical flight requires good low-airspeed flight and the aircraft also has long-range and high-cruise speed for rapid and flexible deployment.

“The A400M has a much larger payload than the C-160 Transall and

Final assembly of the composite (carbon-reinforced plastic – CRP) wingbox is taking place at Airbus UK in Filton. GKN Aerospace of the UK is to supply the complex carbon composite wing spars. Denel Aviation of South Africa is the supplier for the fuselage top shells and wing-fuselage fairings. EADS, Augsburg, is supplying the 7m×4m composite cargo door.

Fuselage assembly is at Airbus Deutschland in Bremen. Final assembly of the aircraft will take place at EADS CASA in Seville.


The cockpit is fully night-vision compatible and provides accommodation for two pilots and an additional crew member for special mission equipment operation. It will be fitted with a fly-by-wire flight control system developed for the Airbus range of civil airliners. Two sidestick controllers are installed to allow the pilot an unrestricted view of the electronic flight displays. The throttle controls are placed centrally between the two pilot stations.

Thales and Diehl Avionik Systeme are developing the A400M’s FMS400 flight management system, based on integrated modular avionics modules, an adaptation of systems being fitted on the Airbus A380 airliner. The avionics will include cockpit control and display systems with nine 6in×6in displays and a digital head-up display which features liquid crystal display (LCD) technology and enhanced vision systems (EVS), for enhanced situational awareness.

A400M for Germany will be fitted with a terrain-masking low-level flight (TMLLF) system, from EADS Military Aircraft, for low-level flight control. The TMLLF system has a Saab Avitronics flight computer. EADS Defence & Security Systems digital map generator is also being fitted.

There is a military mission management system (MMMS), from EADS Defence Electronics, which includes two mission computers. The MMMS controls cargo handling and delivery, calculating the load plan and the computed air release point before an air drop, as well as fuel management and fuel operational ranges. The MMMS also manages the tactical ground collision avoidance system (T-CGAS) and military / civil communications.

“The A400M cockpit is fully night-vision compatible and accommodates two pilots and an additional crew member.”

Rockwell Collins has been selected to supply the HF-9500 high-frequency communications system and the avionics full duplex ethernet (ADFX). Cobham Antennas Division will provide the SATCOM antennas.


The EADS Defence Electronics defensive aids suite will include an ALR-400 radar warner from Indra and EADS, MIRAS (multi-colour infraRed alerting sensor) missile launch and approach warner developed by EADS and Thales, and chaff and flare decoy dispensers. A laser DIRCM (directed infrared countermeasure) system may be added later.

The aircraft can also accommodate armour plating crew protection, bulletproof windscreens, engine exhaust treatment for infrared emission reduction, and inert gas explosion retardation and fire retardation in the fuel systems. The wings have hardpoints for the installation of electronic warfare pods and refuelling pods.

Cargo systems

Rheinmetall Defence Electronics is supplying the loadmaster control system for electronic cargo control. Loadmaster consists of a workstation and control panel, eight sidewall lock panels and a crew door panel. It provides efficient ground loading and airborne cargo drops.

The payload requirements include a range of military helicopters and vehicles, heavy engineering equipment, pallets and cargo containers.

The cargo bay can transport up to nine standard military pallets (2.23m×2.74m), including two on the ramp, along with 58 troops seated along the sides or up to 120 fully equipped troops seated in four rows. For Medevac, it can carry up to 66 stretchers and ten medical personnel.

The A400M can air-drop paratroops and equipment either by parachute or gravity extraction. It can air-drop: single load up to 16t; or multiple loads up to 25t total; or 120 paratroops plus a wedge load of 6t; or up to 20 1t containers or pallets.

“The cargo compartment can be configured for cargo, vehicle or troop transport or air drop, or a combination.”

It can also perform simultaneous drops of paratroops and cargo (RAS / wedge or door loads) and very-low-level extraction (VLLE) of a single load up to 6.35t, or multiple loads up to 19t total weight. Gravity extraction can be performed for a single load up to 4t, or multiple loads up to 20t total weight.

The cargo compartment can be configured for cargo, vehicle or troop transport or air drop, a combination of these and for aero-medical evacuation. A single loadmaster is able to reconfigure the cargo compartment for different roles either in flight or on the ground. A powered crane installed in the ceiling area of the rear section of the fuselage has a five-ton capacity for loading from the ground and for cross-loading.

The rear-opening door has full compartment cross-section to allow axial load movement, roll-on and roll-off loading and for the air drop of large loads.


The A400M will be convertible to a tactical tanker, with the ability to refuel a range of aircraft and helicopters within two hours. Flight Refuelling Ltd is supplying the 908E wing pod drogue system, which provides a fuel flow of up to 1,200kg/min for each pod, and the centreline pallet-mounted hose drum unit fitted in the rear cargo bay, which provides a fuel flow of 1,800kg/min.

In addition, up to two cargo bay fuel tanks (CBT), which connect directly to the A400M’s fuel management system, can be fitted. Total fuel capacity is 46.7t or 58t with the CBTs.


The aircraft’s independent navigation system comprises an inertial reference system (IRS) integrated with a global positioning system (GPS). The weather and navigation radar is to be the Northrop Grumman AN/APN-241E, which incorporates windshear measurement and ground mapping capability.

The radio navigation suite includes a pair of instrument landing systems, VHF Omnidirectional Radio ranging (VOR), radio distance measuring equipment (DME), air traffic control (ATC) transponders, automatic direction finders (ADF) and a tactical air navigation unit (TACAN).


In May 2003 Airbus Military selected the three-shaft TP400-D6 turboprop engine, to be manufactured by EuroProp International (EPI). EPI is a consortium formed by Rolls-Royce (UK, Germany), ITP (Spain), MTU (Germany) and Snecma (France). Rolls-Royce will be responsible for overall integration.

The four engines will each have a maximum output over 11,000shp. EPI states that they will be the largest turboprops ever made in the West. The engines will be fitted with FADEC (full authority digital engine control), supplied by BAE Systems and Hispano-Suiza.

“The A400M will be convertible to a tactical tanker, with the ability to refuel a range of aircraft and helicopters.”

Ratier-Figeac SA of France (a business unit of Hamilton Standard of USA) will supply the eight-bladed composite variable pitch FH386 propellers. The propellers will be 5.33m (17.5ft) in diameter and are fully reversing with the capability to back the fully loaded aircraft up a 2% slope. FiatAvio will supply the propeller gearbox.

Electrical power generation systems are being supplied by Aerolec, a joint venture between Thales and Goodrich. The variable frequency generators will provide up to 400kVa.

Landing gear

Messier-Dowty has been chosen as the supplier of both main and nose landing gear. Each main landing gear consists of three independent twin-wheel assemblies, providing six wheels on each side. This allows the plane to land on unprepared runways. The landing gear system will enable the A400M to ‘kneel’ which lowers the rear ramp to facilitate the loading of large vehicles.

The main landing gear shock absorbers maintain a minimum distance from the ground whatever the load. Messier-Bugatti will supply wheels and brakes. The aircraft will have two nose wheels and 12 braked wheels.

Posted in Aircrafts of Europe | Leave a Comment »

A330-200 Future Strategic Tanker Aircraft (FSTA)

Posted by Tra Tran Hung trên Tháng Bảy 16, 2009





Cabin Dimensions:



Empty Weight
Take-off Weight
Optional Maximum Take-off Weight
Payload (Not Fuel)
Fuel Capacity


2 x Rolls-Royce Trent 772B
71,100lb thrust each
2 x GE CF6-80E1
72,000lb thrust each


Maximum Speed


Refuelling Speed With Boom Refuelling
444km/hr to 592km/hr
Refuelling Speed With Hose and Drogue
370km/hr to 602km/hr

Cargo Capacity:

Underfloor freight hold
NATO Pallets / Containers
6 (88in x 108in) pallets plus 2 LD3 containers
Civil Pallets / Containers
26 LD3 or 8 (95in x 25in) pallets plus 2 LD3 containers


In January 2004, the UK Ministry of Defence (MoD) announced the selection of the AirTanker consortium under a private finance initiative arrangement to provide air-to-air refuelling services for the UK’s Army, Navy and Air Force. The programme is known as the future strategic tanker aircraft (FSTA) programme. In February 2005, AirTanker was confirmed as Preferred Bidder for the FSTA.

In June 2007, the UK MoD approved the private finance intiative (PFI) for 14 A330-200 tankers, under which AirTanker will own and support the aircraft while the RAF will fly the aircraft and have total operational control. In March 2008, the UK MoD placed a 27-year contract for the 14 aircraft to enter service in 2011.

“The A330-200 tanker transporters will replace the RAF’s fleet of 26 VC-10 and Tristar tanker aircraft.”

The AirTanker Consortium is led by EADS with a 40% share, and also includes Cobham (13.33%), Rolls-Royce (20%), Thales (13.33%) and VT Aerospace (13.33%).

The tanker transporters will replace the RAF’s fleet of 26 VC-10 and Tristar tanker aircraft which are approaching the end of operational life.

The MoD air-to-air refuelling programme will cover a 27-year service period and represents the world’s largest defence private financing initiative arrangement. The contract includes options to extend the service for a further period.

The consortium will convert and own the A330-200 multi-role tanker transporter (MRTT) aircraft. The consortium is responsible for certifying and maintaining the aircraft and also for the provision of crew training for the RAF and the provision of sponsored reservist aircrews to supplement RAF crew when required.

In April 2004, Australia also selected the A330-200 MRTT for the AIR 5402 requirement for five aircraft. The MRTT, designated the KC-30B, will replace Australia’s Boeing 707 tanker transporters. In June 2006, Airbus delivered the first A330 platform to EADS CASA in Madrid for conversion. First flight of the KC-30 for Australia was in June 2007. The aircraft are planned to enter service from 2009.

In February 2007, the A330 MRTT was selected by the United Arab Emirates. The contract was placed in February 2008 for three aircraft to enter service from 2011.

In January 2008, Saudi Arabia placed an order for three A330 MRTT aircraft. The aircraft will be fitted with the EADS air refuelling boom system (ARBS) and hose and drogue refuelling pods.

The A330-200 MRTT has a sufficiently high cruise speed and large internal fuel capacity to fly 4,000km, refuel six fighter aircraft en route and carry 43t of non-fuel cargo. Similarly, the aircraft could give away 68t of fuel during two hours on station at a range of 1,000nm.

In February 2008, the KC-30 (since redesignated the KC-45), a tanker based on the A330, was chosen for the US Air Force KC-X next-generation tanker requirement to replace the KC-135. Northrop Grumman led the KC-30 team with EADS as major subcontractor. An appeal by competitor Boeing was upheld and in September 2008, the US Department of Defense cancelled the competition, citing the need to defer any decision for the next presidential administration taking power in January 2008.


The company AirTanker Services Ltd will operate and maintain the fleet of A330-200 MRTT aircraft. VT Group, the support services integrator, will be based at RAF Brize Norton.

On military operations the aircraft will be flown by Royal Air Force aircrew. When not in military service the aircraft can be leased for commercial use and operated by civilian aircrew.

It is envisaged that the fleet will be managed in three groups. A majority will be in full time military service with the RAF. Another group will be in military service during the weekdays, switching to commercial use at the weekend, and the other aircraft will be in full-time commercial use but available to the RAF in times of crisis.

Manufacture and conversion

The standard A330-200 commercial aircraft will be built at the Airbus manufacturing centre at Toulouse. The aircraft are to be transferred to Cobham manufacturing facilities at Bournemouth International Airport, UK, for conversion to the tanker transporter variant and aircraft certification will be carried out by QinetiQ at Boscombe Down.

“The A330-200 MRTT has a sufficiently high cruise speed and large internal fuel capacity to fly 4,000km.”

All the aircraft will be capable of being fitted with two Cobham FRL 900E Mark 32B refuelling pods, one under each wing. Some aircraft will receive a third centreline underbelly refuelling system.

The A330-200 wing shares the same design structure including the strengthened mounting points as that of the four-engine A340 aircraft. The wing positions for mounting the air-to-air refuelling pods therefore require minimal modification.

The aircraft’s fuel system includes the installation of additional pipework and controls.

The baseline commercial aircraft uses a configuration of very high capacity fuel tanks in the wings so modifications to the fuel tanks for the tanker transporter role are not required.

Other than the refuelling systems, the main areas of modifications are the installation of plug-in and removable military avionics, military communications and a defensive aids suite. The military systems will be removed when the aircraft is in commercial non-military use. The passenger cabin and the cargo compartment are not altered.

The lower deck cargo compartment can hold six 88in x 108in Nato standard pallets plus two LD3 containers. The civil cargo load could be 28 LD3 containers or eight 96in×125in pallets plus two LD3 containers.


The aircraft has a maximum fuel capacity of 139,090l or 111t. The high fuel capacity enables the aircraft to fly at longer ranges, to stay on station longer and to refuel more aircraft, which increases the basing options and reduces forces reliance on host nation support. For the UK requirement the aircraft is fitted with a hose and drogue system but will be fitted with a refuelling boom system for the Australian order.

Cobham is providing the air refuelling equipment including the 905E wing pods and a fuselage refuelling unit. Cobham also supplies antennae, cockpit control systems, oxygen and fuel system units and composite components for all Airbus A330 aircraft.

The QinetiQ AirTanker support team carried out an air refuelling trial of the A330-200 aircraft on 28 October 2003. The test involved assessing the handling qualities of the Tornado aircraft flown in a number of representative refuelling positions astern the wing and centreline refuelling stations. The two-hour flight test included various approaches to the refuelling positions and exploring displacements vertically and laterally from the normal refuelling position.

The trial was carried out in between 15,000ft and 20,000ft and at 280kt which is the middle of the Tornado’s refuelling envelope. Within this test envelope there was minimum turbulence in the airflow astern the A330-200 and the Tornado’s handling qualities were very satisfactory in all tested positions.

“The high fuel capacity enables the aircraft to fly at longer ranges, to stay on station longer and to refuel more aircraft.”

Flight deck

The flight deck of the A330 is similar to that of the A340. The tanker transporter aircraft cockpit has a refuelling officer’s station behind the pilot and co-pilot seats.

The electronic flight information system has six large interchangable displays with duplicated primary flight and navigation displays (PFD and ND) and electronic centralised aircraft monitors (ECAM). The pilot and co-pilot positions have sidestick controllers and rudder pedals. The aircraft is equipped with an Airbus future navigation system (FANS-A), including a Honeywell flight management system and Smiths digital control and display system.

The fly-by-wire computer suite includes three flight control primary computers and two flight control secondary computers, all operating continuously.

UK tankers are being fitted with the Northrop Grumman large aircraft infrared countermeasures system (LAIRCM).

Cargo and passengers

Even with a full fuel load, the aircraft has the capacity to carry 43t of cargo. The aircraft can carry up to 285 passengers.


The aircraft for the UK are powered by two Rolls-Royce Trent 772B jet engines, each providing 71,100lb of thrust. The aircraft for Australia are powered by GE CF6-80E1 engines, rated at 72,000lb thrust.

The auxiliary power unit is a Hamilton Sundstrand GTCP 331-350C.

The main four-wheel bogie landing gear, the fuselage centre line twin wheel auxiliary gear and the twin wheel nose units are fitted with Goodyear tyres. The runway length for maximum take-off weight is 2,650m and the ground turning radius is 43.6m.

Posted in Aircrafts of Europe | Leave a Comment »

A310 MRTT Multi-Role Tanker Transport

Posted by Tra Tran Hung trên Tháng Bảy 16, 2009




Overall Length
46.66m (153ft 1in)
Height to Top of Tail
15.81m (51ft 10in)
Fuselage Diameter
5.64m (18ft 6in)
43.9m (144ft)


Maximum Ramp Weight
164.9t (363,538lb)
Maximum Take-Off Weight
164t (361,554lb)
Maximum Landing Weight
124t (273,370lb)
Maximum Zero Fuel Weight
114t (251,324lb)
Maximum Non-Fuel Payload
37t (91,600lb)


2 x General Electric CF6-80C2 or Pratt & Whitney PW4152/6
Up to 59,000lb


Maximum Speed
Mach 0.79
Runway Length at 164t Maximum Take-Off Weight
Runway Length at 150t Take-Off Weight
Range With Maximum Passengers
Ferry Range
Fuel Offload Available at Range 1,000nm


The Airbus Industrie A310 MRTT is a wide-bodied multi-role tanker transport aircraft derived from the Airbus A310-300 civil passenger and transport aircraft.

It is powered by either General Electric CF6-80C2 or Pratt and Whitney PW 4152 engines. The A310 MRTT is capable of being readily converted to the following roles: air-to-air refuelling tanker, all-cargo transporter, medical evacuation aircraft, and an all-passenger transporter or combination of VIP, passenger and cargo transporter.

Four A310 MRTT aircraft are in service with the German Air Force. The first took its maiden flight in December 2003 and was delivered in October 2004. The A310 were already in service with the German AF as transports and aircraft conversion for in-flight refuelling was carried out by Airbus Deutschland and Lufthansa Technik.

EADS delivered the first A310 MRTT fitted with a new mission avionics package to the German Air Force in June 2007. The new mission avionics allows the A310 MRTT allocation to the NATO Reaction Forces.

Two A310 aircraft of the Canadian Air Force have been converted to the MRTT configuration. The aircraft are designated CC-150 Polaris. The first was delivered in October 2004.

For the air-to-air refuelling (tanker) role, the aircraft is equipped with five centre fuel tanks or Additional Centre Tanks (ACT), and with hose and drogue pods under the outer wings. The total fuel capacity is up to 96,920l (25,605USgl), which corresponds to 77,500kg (171,000lb).

In an all-cargo transport role, the maximum non-fuel payload is 37t (81,600lb). For the troop transport role, the aircraft can provide up to 214 seats. In a combined cargo / troop transport, 12 pallets and 54 troops can be carried.


The multi-role tanker transport is operated by a flight crew of three for all missions relating to Air-to-Air Refuelling (AAR): two pilots and the AAR operator. The AAR operator station is located in the cockpit just behind the captain. The two pilots have direct access to the majority of the information and controls concerning the AAR operational and safety aspects.

The pilots’ stations are equipped with all interfaces for control and monitoring of the ACT tanks, formation and rendezvous lights, and military avionics. This configuration allows a mission to be carried out with the AAR operator’s station switched off.

“In a combined cargo / troop transport, 12 pallets and 54 troops can be carried.”

The AAR operator’s station is equipped with a fuel control panel, with fuel pump controls and fuel quantity indicators, and a dual pod control panel. The AAR operator is responsible for control of the aircraft’s rendezvous beacons and tanker illumination lights during air-to-air refuelling. The optional external video monitoring system uses infrared floodlighting for day-and-night monitoring of refuelling operations.


The MRTT is capable of transferring 33t of fuel during a 3,000nm trail operation or 40t of fuel at 1,000nm with two hours on station. Fuel transfer during air-to-air refuelling is achieved by using the aircraft’s centre tank as a collector tank. The fuel management system and the centre of gravity computer ensure automatic tank sequencing, centre of gravity control and engine fuel feed control.

A dual refuelling pod system is installed, consisting of two Flight Refuelling Ltd Mk 32B pods mounted on pylons under each wing and a control panel in the AAR operator’s station. The total-fuel-on-board, fuel-for-dispense and individual tank quantities are displayed, together with flow rate, temperature and total fuel transferred during in-flight refuelling. Two aircraft can be refueled at the same time. 15,000l of fuel can be transferred a minute.

A flying boom system can be installed, which is capable of transferring fuel at a rate of 1,200USgl/min. Two central Hose Drum Units (HDU) installed side by side in the lower aft fuselage will each be capable of dispensing 800USgl of fuel a minute.


The fuselage accommodates four separate cargo compartments. The large main deck compartment is loaded though a wide door on the forward left side of the fuselage. The door can be opened to the vertical position to allow loading by crane. The other three cargo compartments are below deck. Containerised and palletised loads with a pallet height up to 96in can be carried. Containers and pallets are moved by an electrically powered drive system and are locked manually.

In an air hospital role, the A310 MRTT can take up to six intensive care units and 56 stretcher cases.

“The MMTT fuselage accommodates four separate cargo compartments.”


The tanker aircraft is equipped with the avionics systems installed in the A310-300 civil aircraft to ensure the operation of the tanker under civil air traffic control. The military avionics systems installed on the tanker are the V/UHF system, an IFF system and an AIR TACAN. The V/UHF system allows the aircraft to operate within the military air space control system.

The avionics suite can include a Global Positioning System (GPS), satellite communications, an Aircraft Communications Addressing and Reporting System (ACARS) and a Traffic Collision Avoidance System (TCAS).

Posted in Aircrafts of Europe | Leave a Comment »